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Recent diagnostic advances in gas-puff Z pinches at the Weizmann Institute for the first time allow the
reconstruction of the current flow as a function of time and radius. These experiments show an unexpected
radially-outward motion of the current channel, as the plasma moves radially-inward [C. Stollberg, Ph.D
thesis, Weizmann Institute, 2019]. In this paper, a mechanism that could explain this current evolution is
described. We examine the impact of advection on the distribution of current in a cylindrically symmetric
plasma. In the case of metric compression, |v,| & r, the current enclosed between each plasma fluid element
and the axis is conserved, and so the current profile maintains its shape. We show that for more general
velocity profiles, this simple behavior quickly breaks down, allowing for non-conservation of current in a
compressing conductor, rapid redistribution of the current density, and even for the formation of reverse
currents. In particular, a specific inward radial velocity profile is shown to result in radially-outward motion

of the current channel, recovering the surprising current evolution discovered at the Weizmann Institute.
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I. INTRODUCTION

For many years, Z pinch experiments had limited di-
agnostic capability. These limitations were particularly
pronounced for the magnetic field diagnostics, where
it was only possible to track the total current flowing
through the system. Recently, the development of spec-
troscopic diagnostics based on Zeeman splitting have en-
abled the reconstruction of temporally- and radially re-
solved magnetic field profiles, thus yielding the evolution
of the current density distribution during implosion' and
stagnation®.

Davara et al.! confirmed that during the implosion
phase of a fast Z pinch the entire current flows through
the compressing plasma and obeys the normal diffusion
assuming Spitzer resistivity. A very different result was
found during stagnation by Rosenzweig et al.”. Here,
the proportion of current flowing through the stagnating
plasma was at most a few percent. This finding agrees
with the results reported in Ref.®, where it was shown
that in significantly disparate experiments the magnetic
field effect on the pressure and energy balance at stagna-
tion is negligible, leading to the conclusion that at most
1/3 of the load current flows in the stagnating plasma.

A recent spectroscopic investigation® on a different Z
pinch experiment, also performed with unprecedented

spatial and temporal resolution throughout implosion
and stagnation, verified the previous results which held
over most of the axial length of the pinch. However, in
this study, a remarkable phenomenon was found in the
column portion near the cathode. While at the begin-
ning of the stagnation, most of the current flowed within
the small radius of the stagnating plasma, the current
quickly escaped to much larger-radius as the stagnating
plasma continued to compress. This effect was not seen
in the rest of the plasma column; at those positions the
current was never observed to penetrate to small radii,

2.3

consistent with the conclusions in Refs.””. In order to
interpret these experimental results it is critical to un-
derstand the behavior of the current distribution during
a plasma implosion.

In a cylindrically symmetric system, where for all
quantities 9/00 = §/9z = 0, the field evolution consists
of two parts: resistive diffusion and magnetic induction.
Historically, the theoretical focus has been on the for-
mer. For instance, one of the more successful theoretical
predictions of the current distribution in a Z pinch is
the inverse skin effect”’, a purely resistive effect which
assumes no plasma motion. In essence, the calculation
showed that the only resistive solution consistent with a
decreasing total current in the conductor was one with
an inverse current running at the boundary. Although
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such a model is sufficient and highly successful for plas-
mas where the resistive diffusion dwarfs the induction, as
experiments grow hotter and faster, the induction effects
will eventually dominate.

In cases where the induction effects have been exam-
ined, they are often in the context of specific shock so-
lutions, and the change in field across the shock”. How-
ever, in hot systems and systems with finite resistivity,
the current channel is likely to be less localized, and thus
examining the effects of induction for more extended ve-
locity profiles is necessary.

There is an intuitive notion on how a current channel
compresses, which is based on the case of metric com-
pression, where v, o r. In this case, the divergence of
the velocity is constant within the cylinder. Everywhere,
conservation of mass implies that the density increases
according to n(t) = n(0)(R(0)/R(t))?, and conservation
of magnetic flux implies that the magnetic field increases
according to B(t) = B(0)(R(0)/R(t)). Because I x rB,
the magnetic field evolution implies that the enclosed cur-
rent at any given point is a conserved quantity as well,
dI/dt = 0. Thus, the current channel smoothly com-
presses, maintaining its shape and conserving the total
current.

In this paper, we show that for more general velocity
profiles, this intuition quickly breaks down. Flux con-
servation does not in general imply conservation of the
total current, and the induction equation thus allows for
rapid redistribution of the current density, and for the
formation of reverse currents.

In Section II, we rewrite the induction equation in
terms of the enclosed current, showing how it takes a spe-
cial form in the case of metric compression that leads to
current conservation. By considering power-law velocity
profiles, we show how metric compression provides a nat-
ural boundary between regions of increasing and decreas-
ing enclosed current. We solve the induction equation
analytically for the case of a compressing, bounded con-
ductor, showing how a non-uniformly contracting con-
ductor does not have a conserved global current. In Sec-
tion III, we exploit the conserved quantity, the magnetic
flux, to easily find numerical solutions for more complex
velocity profiles, and use our intuition from the analytic
solutions to understand the redistribution of the current
channel in several experimentally relevant scenarios. In
Section IV, we compare our results to the Weizmann ex-
periment, demonstrating qualitative agreement for the
current channel expansion and re-contraction. In Sec-

tion V, we further show that the observed behavior of
the current channel cannot be explained by the histori-
cally successful model of Haines, which considers only the
resistive evolution of the field, neglecting the plasma mo-
tion. Finally, in Section VI, we discuss useful observables
with which future experiments can more quantitatively
distinguish resistive and advective effects.

1. CURRENT PROFILE EVOLUTION IN IDEAL MHD

‘We model the pinch as a cylindrically-symmetric ideal
(superconducting) plasma. In ideal MHD, the magnetic
field evolves according to the induction equation:

OB
S =V x (vex B). )

The relevant velocity here is the electron velocity ve,
whereas the relevant dynamical velocity v in MHD is
mass-weighted. Throughout this paper, we will assume
that the various species (electrons, ions, and neutrals) are
collisionally equilibrated, which requires the timescales
of momentum equilibration to be much shorter than the
dynamical timescales of the implosions considered. Then
V. &~ Vv to high precision, and the frozen-in law holds
even in the presence of ionization events.

With this assumption, in cylindrical coordinates,
Eq. (1) becomes:

0By

el [V % (v,Bgz)]g (2)
=~ o5 (0 Bo). ®)

We can relate this magnetic field to the current
contained within a cylinder of radius r, I(r) =
2m f(; rj.(r)dr, by Ampere’s Law:

pol(r) = 2mrBy(r). (4)

By taking a partial derivative with respect to time and
inserting Eq. (3), we find:

a - o o ar

aI _ oI or Id(”i), )
r

Although this is just a recasting of the induction equa-
tion in terms of the enclosed current, it says something
fairly unintuitive: although magnetic field lines are ad-
vected along with the plasma, the current is, in general,
not. The reason that this is unintuitive is that intuitions
about how the current evolves are often formed by consid-

ering “self-similar” or “metric” compression, where the
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divergence of the velocity is uniform across the plasma.
This metric compression is given by

,
Ur,met = Vo <%> ; (6)

indeed, this is the form chosen for the velocity by Haines”
when he extends his analysis to a compressing conductor.
But when v, is given by Eq. (6), the term on the RHS of
Eq. (5) disappears.

This disappearance has two implications. First, dur-
ing metric compression, the current density is advected
with the velocity. Second, during non-metric compres-
sion, there are additional effects on the current evolution
which cannot be understood within the normal intuitive
framework of metric compression, and which depend on
the degree of deviation from metric compression.

A. Developing intuition through analytic solutions

To get a sense for the effects of non-metric compression,
it is useful to examine the behavior for specific velocity
profiles. In particular, consider a power-law family of

o (r) = vo (é) . &)

We see that o = 1 reduces to Eq. (6), and thus describes
metric compression (or expansion). We will describe ve-

profiles:

locity profiles with a > 1 as “super-metric compression”
(or expansion), and with & < 1 as “sub-metric compres-
sion”.

A nice feature of these power-law velocity profiles is
that they allow us to analytically solve the induction
equation. To do this, we first must solve for the mo-
tion of a fluid element, which mathematically provides
the characteristic curve along which Eq. (5) is solved.

It will make things cleaner to normalize this equation
to a characteristic radius # = r/ag and time { = t/7,
yielding a characteristic nondimensional velocity o =
v./(ao/7). Here, ag is a typical spatial scale of the ex-
periment, e.g. the radius of the outer boundary of the
plasma, and 7 is a typical time scale for the compression.
Then Eq. (7) becomes:

() = Bo™, (®)

where 0y = v97/ag. Then, for a given fluid element, the

normalized radius R = R/ap as a function of time is

governed by:

dR - -
=2 = 5.(R) = voR". 9
7 = (B =1 (9)

The solution to this equation is

~ Ro&ﬁot~ a=1
R= | N 1/(-a) (10)
(RU_“ +(1- a)f)ot) a#1,

where Ry = R(i = 0).

Now, we wish to plug this fluid element motion into
the induction equation, Eq. (5). First, we plug Eq. (7)
into Eq. (5), and then we nondimensionalize, yielding

% = 717:% (7707:&71) izt (11)
= —(a—1ggR*'I. (12)

Without yet having solved this equation, we can nev-
ertheless gain insight into its behavior. Specifically, the
current enclosed by a moving fluid element increases or
decreases according to

sgn <%> = —sgn(v,)sgn(a — 1). (13)

Thus, the current enclosed by a fluid element in a com-
pressing plasma (v, < 0) undergoing submetric compres-
sion (a < 1) will decrease over time. Switching from
compression to expansion or from sub- to super-metric
compression will reverse this conclusion. The full set of
possibilities are laid out in Table I.

The full solution for I(7,t) is given by

Ro(rf)=4° . *=1 5
T - - @)ad) T £

Note here that we consider RO to be a function of 7 and
i, with the interpretation that Ro(1,%1) represents the

790 <0 7o >0
a > 1\d|I|/dt >0 d|I|/dt <0
a < 1|d|I|/dt <0 d|I|/dt >0

TABLE 1. Evolution of the current |I| enclosed by a fluid
element for super-metric (& > 1) and sub-metric (o < 1)
velocity profiles, for both compression (79 < 0) and expansion
(%o > 0).
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FIG. 1. Compression of a current channel in a bounded conductor in the lab frame. Left: Velocity profiles sub-metric (o < 1,
red, dot-dashed), metric (o = 1, black, solid), and super-metric (o > 1, blue, dashed) compression. Center: the solution to
I(7, = 0.6) for a bounded conductor with initial radius @ = 1, and an initial uniform current profile, for each of the velocity

profiles. The initial enclosed current distribution is shown in gray. The boundary of the conductor corresponds to the kink in

the enclosed current profile. Right: the corresponding current density j (7,7 = 0.6).

initial position (at £ = 0) of the fluid element that is
at position R(fl) = 7 at time ¢;. This definition links
the Lagrangian frame of the fluid element to the fixed
Eulerian coordinates of the lab frame.

These power-law solutions, when considered globally,
are not particularly physical. For a < 1, we find finite
enclosed current at r = 0, indicating the formation of a
current singularity at # = 0. Meanwhile, for a > 1, a
singularity propagates inwards from 7 = oo. Neverthe-
less, they are useful for informing our view of how the
magnetic field should evolve in local regions undergoing
different types of compression.

B. Conductor with a hard boundary

We are now in a position to examine the most common
model for the Z pinch: the bounded conductor. This
model forms the conceptual basis for the snowplow and
slug-piston models, as well as Haines’ study of the resis-
tive evolution of current densities”.

We will study the specific case of a conductor that,
at time £ = 0, extends from # = 0 to ¥ = 1, and is
surrounded by a vacuum. For this scenario, Eqs. (14-15)
apply for all 7 < a, where the normalized outer radius a
of the conductor is defined by RU(&, t) = 1. Outside of
this radius, I maintains the same value as at the surface
of the conductor, since the vacuum region can contain no
current. This solution is shown in Fig. 1.

We can see instantly that the total current within the
conductor is not conserved for o # 1. Indeed, Eq. (14)
can be used to derive an expression for the total current
as a function of time, yielding

Itat (E)
Itat (0)

Thus we see that, for a bounded conductor, the rela-
tionships in Table I apply not just to the local enclosed

=a'me (16)

current, but to the total enclosed current as well. Inter-
estingly, this implies that the specific radial profile of the
compression, i.e. the shape of the snowplow or slug, can
have a massive impact on how much total current ends up
flowing through the plasma. Therefore, the velocity pro-
file likely can have a large influence on the inductance of
the plasma and thus the circuit dynamics of the pinch®,
although the coupling of this motion to the circuit is out-
side the scope of this paper.

C. Understanding the hard conductor through flux
conservation

Although the total current running through the con-
ductor is not conserved, we can see from Eq. (14) that
the enclosed current depends only on the initial current
distribution, and the mapping between the initial and fi-
nal position of the fluid element Ry — 7, but not on the
particular trajectory itself. This turns out to be true for
general velocity profiles, and can be traced back to the
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conservation of the magnetic flux. The conservation of
the flux can also help us to understand why the current
behaves the way it does.

In a cylindrically symmetric system, the normalized
magnetic flux is given by

B(F) = /0 B(#)d. (17)

In metric compression, the magnetic field everywhere in-
creases by the same factor as the radial coordinate de-
creases, so that the integral maintains the same structure.
However, this is not true when « # 1. In particular, for
super-metric compression, the current density and mag-
netic field move closer to the conductor edge (Fig. 2).
Because I « B, the magnetic field is more “expensive”
(in terms of current) to produce at larger radius, and so
the total current in the conductor goes up to keep the
total flux constant. Meanwhile, for sub-metric compres-
sion, the current distribution moves in, where the mag-
netic field is “cheaper” to produce, and thus the total
current goes down.

©

FIG. 2. Schematic showing evolution of magnetic field lines
in r — @ plane for sub-metric (o < 1), metric (o = 1), and
super-metric (a > 1) compression of the conductor. When
a < 1, the field gets more concentrated on axis, where it is
cheaper (in terms of current) to produce, and thus the total
current decreases. The reverse occurs for « > 1. Metric
compression represents a very special case where the total

current is conserved.

(S

D. Importance of the boundary condition

This global non-conservation of the current for the
bounded conductor arises from the fact that v, does not
go to 0 at the conductor edge. If v, went to 0 (or « to
1, with j, = 0) in an extended region at the boundary,
then from Eq. (5), dI/dt = 8I/0t = 0 at that point.
Thus, if there is a stagnant region of ideally conducting
plasma outside of some radius, the current enclosed by
that region will remain constant.

In a gas puff Z pinch the occurrence of deflagration pro-
cesses is very likely. The initial Paschen breakdown will
tend to occur at some radius r,, as was found by Giu-
liani et al.” in their attempt to fit the stagnation data
from another experiment at the Weizmann'"%''. Then,
an ionization wave moves outward, meaning a plasma is
continually initialized at rest at the pinch boundary'”.
Thus, a boundary condition of v = 0 at the conduc-
tor boundary seems somewhat reasonable. It is therefore
worthwhile to examine velocity profiles which go to 0 at
the pinch boundary. This will in general require numer-
ical solutions.

We note in passing that this deflagration wave also
provides a non-resistive mechanism for current channel
broadening, which helps to provide the broad initial cur-
rent profiles. Deflagration creates new plasma at the
outer boundary of the conducting plasma region, and
the current generator can only add current (in excess of
plasma self-induction) at the outer edge of the plasma.
Thus, excess current is continually added to the expand-
ing outer edge of the plasma, producing a broad initial
current profile even in the absence of magnetic diffusion.

E. Current evolution in the lab frame for constant velocity
profiles

So far, we have been focused on the evolution of the
enclosed current in the fluid element frame. The analysis
in this frame is relatively simple, since the gain or loss of
current do not depend on the specific current profile in
question. In addition, this frame naturally describes the
gain or loss of current “from the plasma.”

In an experimental setting, however, one measures the
magnetic field as a function of space, not as a function of
fluid element. Thus we must relate the current evolution
in the fluid frame to the current evolution in the lab
frame.

‘While in general there is not much progress to be made
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once the convective derivative is included, we can find
some valuable intuition in the special case where the ve-
locity profile is constant in time. Then, we can use

dv, 0 )
= <%+vra) Ur (18)

to eliminate the r derivative in Eq. (5), yielding:

dI v, 1

“@_ “o, 1

dt IOT + rv (19)
Ldl__Ldy  1dR
Idt  wv.dt Radt’

(20)

In the second line, we have used v, = dR/dt to pass the
last term from the lab to the fluid frame. Then, we can
recast Eq. (20) as a conservative equation in the fluid

% (IZT) =0. (21)

The conservative equation allows us to easily write the

frame:

lab-frame solution I(r,t):

Tv, _ Io(Ro)vr(Ro)
T RO ’

Here, Ip(Ryp) is the initial enclosed current evaluated at

(22)

the starting position Ry (r,t) of the fluid element that is
at r at time ¢.

We can examine the time-evolution of the enclosed cur-
rent by taking a partial time derivative:
Uy oI o 1o} IU(RU)’UT(R()) 8RU
T dt R, ( Ro )W

(23)

As before, we can gain insight by examining power law
profiles. Taking v oc r* and Iy Rg , we have

sgn (%) = —sgn(a+ B —1)sgn(v,), (24)

where we have noted that dRy/0t has the opposite sign
of v,, since it is a backwards-integration of the velocity
trajectory.

Consider again the case of a compressing plasma. If
the current density is 0 in some region outside a region
of current then in this region 5 = 0, and there will be
a local decrease of enclosed current for @ < 1, as in the
fluid frame. However, if we have a finite current density,
B > 0, and thus there will be a lab-frame decrease of cur-
rent only if @ < 1 — 3. The convective derivative, which
carries current density along with the plasma, tends to
increase the enclosed current and make it harder for the
local current to decrease. In the important case of uni-
form current density, S = 2, and there is only lab-frame
current decrease if a < —1.

11l.  NUMERICAL SOLUTIONS FROM FLUX
CONSERVATION FOR MORE GENERAL SCENARIOS

Because the magnetic flux is conservered, for a comov-
ing fluid element with radial coordinate R(t),

d

dt

This conservation property gives us a quick way to find

B(R(t)) = 0. (25)

numerical solutions to the induction equation for more
complicated, or even time-dependent, velocity profiles.
Given a velocity profile #(7,f), we start by numerically
solving for the motion of the fluid element R(f). We will
then have a set (R(f), ®(R(f)), which can be interpolated
to yield ®(7,%) over the domain of dependency of our
initial fluid elements. ® can then be differentiated to
yield B and 1.

Access to numerical solutions allows us to consider
plasmas with time-dependent behavior, such as an inflow
followed by an outflow, as well as plasmas with different
behaviors in different regions. Such features are essential
for modeling the behavior of the annular current distribu-
tions embedded within larger conducting regions, which
could characterize gas-puff Z pinches.

A. Annular current implosions

If we have a total current Iy flowing through a uniform
plasma of characteristic radius ag, we can approximate
the initial conditions via the one-parameter function fam-
ily:

. m+21 (m +1)r™
Jm(F) = 21 a2 ((1 + (m+ 1)7-m+2)2> - (29

The associated magnetic field is given by By =

1 fg rj(r)dr, which gives:

. /tofo (m + 1)7~‘m+1
B = —_— ] 2
)= (1 T (m+ L)imt2 27

In this family of functions, shown in Fig. 3, the maximal
magnetic field is always at 7 = 1, and the parameter
m determines the peakedness of the current distribution,
with higher peaking at high m. Note that j(r) diverges
at r =0 for m < 0.

If the plasma is initially uniform, at small times, the
velocity profile will be proportional to the force density
profile of the j x B force, i.e.

Yy M2 wol? (m + 1)%72m+l ()
" 5\ (14 (m+1)im+2)?

72 pad
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FIG. 3. The function family jn(7) and B,.(7), and associated short-time velocity profile v, (7) for different values of m.
Different lines correspond to m = 0 (green, solid), m = 1 (blue, dashed), and m = 4 (red, dash-dotted). The maximum B
field always occurs at 7 = 1. Increasing m corresponds to increasing peakedness of the current profile. The dot on each profile

indicates the point where 9(0/7)/07 = 0, i.e. the transition point between super-metric and sub-metric compression.
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FIG. 4. Evolution of the enclosed current I(7)/Io in the lab frame as a function of time  for the current annulus scenario, with
a velocity profile given by Eq. (29). Line colors and styles correspond to the matching profiles in Fig. 3. Because the enclosed
current goes from increasing at small radii to decreasing at large radii, an inverse current channel forms.

This velocity profile is shown in Fig. 3. Although it will
only be valid at short times, the general shape is likely to

persist for a longer time. In nondimensional form, with
t=t/r:

" <<m+ 2)(m + 1)2;.%1) i)

" (1 + (m + 1)7m+2)?

477%}13 (30)
tolg

We can apply our intuition from Section II to the veloc-
ity profile in Eq. (29). At low radii, the profile is clearly
super-metric for m > 0, so that the current enclosed by
a fluid element is increasing, in accordance with Eq. (5)
and Table I. However, at large radii, the compression be-
comes sub-metric, and so the current enclosed by a fluid
element is decreasing. Thus, the current density must be
decreasing between these regions, and at some point, will
become negative.

This reversal of the current density can be seen in the
simulations in Fig. 4, which show the enclosed current
profile resulting from the initial conditions in Fig. 3. For
higher m, i.e. a more peaked initial current distribution,
it occurs both earlier (due to the larger velocities) and
further out. We also see that the enclosed current at
certain radii can actually exceed the enclosed current at
the boundary, implying the possibility of creating a cur-
rent channel stronger than that suggested by a boundary
measurement, which is screened from conventional (edge)
diagnostics by a reverse current.

Of course, these solutions do not represent self-
consistent dynamics; as the current distribution changes,
the plasma motion will change in response. In particular,
the formation of reverse currents will result in outward
forces on the plasma, which will dramatically impact the
dynamics. Nevertheless, the solutions indicate an inter-
esting possible consequence of the fact that the plasma is
not a fixed, uniform conductor with a well-defined bound-
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ary, and are worthy of further investigation.

B. Induction near stagnation

As the implosion progresses, Ohmic heating and com-
pression of the plasma will rapidly increase its thermal
pressure. The pressure force will often grow much larger
than the magnetic force and may further accelerate the
leading edge of the plasma annulus while decelerating the
rear edge. In this case, it is reasonable to assume that
the current channel is trailing the region of peak com-
pression velocity. Thus, as stagnation approaches, the
current channel will find itself in a region of sub-metric
compression, where we can expect the enclosed current
to decrease.

To see this in action, consider a velocity profile of the
form

5= die /e, (31)

In terms of the coefficients (a, b, ¢, d), the radius of max-
imum velocity is given by #* = (ac/b)!/?, and the max-
imum velocity is given by * = d(ac/eb)*/®. Thus, we
can choose a desired general shape by choosing a and b,
and then solve for ¢ and d in terms of our target 7* and
0*. Choosing o* = 1/2, 7* = 0.3, a = 1.7, and b = 1
results in the velocity profile shown in the leftmost plot
Fig. 5. The corresponding change in the position of the
fluid elements is shown in the second plot from the left.

We examine the effect of this velocity profile on a cur-
rent annulus initially located outside of the peak inflow,
from 0.4 < 7 < 0.7. Overall, the current channel widens
dramatically as a result of the plasma motion. However,
the bulk of the current channel-roughly the outer 70%—
moves outwards. Because the current channel is often de-
fined as an inter-quantile range of the total current—e.g.
the region between 20% and 90% of the peak current-a
laboratory observer would describe this as outward mo-
tion of the current channel, which occurs as a result of
the inward motion of the plasma.

While it is clear that the majority of the current chan-
nel can move outward under plasma compression, the
inner edge of the current channel always has to move in-
ward. To see this, we can consider two cases: the case
where there is finite current density at the origin, and the
case where there is not. If there is finite current density
at the origin, then we simply observe that compression
must be metric or super-metric at » — 0; otherwise, there

is infinite divergence in the velocity field. Thus, the cur-
rent must be increasing in time (or constant, if there is
an empty region in the current profile), but cannot de-
crease. If there is no current density at the origin, then
there must be a location where v, is nonzero, but I is 0.
At this point, the convective term v, 01 /9r will be larger
in magnitude than the RHS of Eq. (5), since I must go
to 0 faster than its derivative. Then, Eq. (5) says that
0I/ot = —v,01/0r, so that for inward-flowing plasma,
the enclosed current will grow. Thus, during compres-
sion, the main channel can only move outward through
broadening of the total channel, with inward motion of
the channel at the inner edge.

The velocity profile in Fig. 5 can also give us intu-
tion into the behavior post-stagnation. When a Z pinch
plasma stagnates, the plasma begins to expand from the
center outward. Thus, the velocity profile will correspond
to sub-metric expansion, i.e. we will have Fig. 5, but with
opposite sign. Thus, by exchanging the roles of the initial
and final profiles in the figure, we can gain insight into
the post-stagnation behavior.

Post-stagnation, then, we see that the current channel
narrows, and the majority of the current channel can be
made to move inward, depending on the velocity profile.
Just as inflow can lead to an outward motion of the main
current channel, outflow can lead to inward motion.

These examples demonstrate some of the unintuitive
behaviors contained in the induction equation, for even
fairly straightforward velocity profiles.

IV. COMPARISON TO EXPERIMENT

Observing these unintuitive effects requires the mea-
surement of the radial magnetic field profile. Detailed
measurements of the evolution of the radial magnetic
field profile have been recently obtained at a small-scale
Z pinch at the Weizmann Institute of Science. Being
part of a PhD thesis*, the detailed setup and results are
currently in preparation for publishing elsewhere. Here,
polarization spectroscopy (simultaneous detection of the
o+ and o- Zeeman components'*!*) along with utiliza-
tion of a pronounced charge state separation, as has been
done previously at the Weizmann Institute”, yielded the
highly temporally and radially resolved magnetic field
profiles.

The Weizmann plasma has a density that ranges from
10'7 — 10" ¢cm~3 and a temperature that ranges from
5 — 20 eV. Thus, the electron-ion collision frequency
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FIG. 5. Details of a pre-stagnation current escape scenario. From left to right: velocity profile, final fluid element position as

a function of initial fluid element position, enclosed current profile, and current density profile. All plots except the second

represent profiles in the lab frame. The initial enclosed current distribution and current density are shown in gray. The current

channel broadens, with the majority of the current channel moving outwards.

Tei < 20 ps, meaning that the electron and ion veloc-
ities extremely well equilibrated on the 30 ns dynami-
cal timescales considered. A minimum value for the ion-
neutral collision frequency occurs in the low-temperature
limit at the low density, where the collision time in sec-
onds is given by'”:

1 [agr 1/2
i =1.1x10°— | == Z; 32
Tni X " (AR> iy ( )

where n; is the ion density in cm™3, ap is the relative
polarizability of the atom, equal to 5.4 for oxygen (used
in the current experiment), and Ag is the reduced mass
in a.m.u., equal to 16. Thus, the minimum neutral-ion
equilibration time in low-density, singly-ionized regions of
the plasma is 7,,; = 6.4 ns. In practice, the equilibration
time will tend to be even shorter than this, since the less
dense areas of the plasma tend to be hotter, and thus
more highly ionized.

If the plasma were purely ideal, we could infer an av-
erage velocity profile between measurement timepoints
directly from the magnetic field profile. To do this, we
take advantage of the conservation of flux. Because the
flux is conserved, if we measure the flux as a function of
radius at two timepoints ¢; and t5, we have:

(7, t1)lr=rety) = P(7, t2)lr=R(t,)- (33)

Thus, we have a natural mapping R(t1) — R(t2), which
corresponds to the average fluid motion over the interval
[tl, t2] .

A complication is that the plasma in this experiment
is also resistive. The relative importance of advective vs
resistive effects in the induction equation is given by the

magnetic Reynolds number,

In
Rm = M

(34)
In the Weizmann experiment, the length scale is several
millimeters, the implosion times are on the order of 100
ns, and the resistivities are on the order of 30 Qum. Thus,
Rm ~ 0.5, though this number can vary significantly
across the plasma.

The fact that the magnetic Reynolds number is order
1 means that resistivity and advection will be equally
important in determining the magnetic field evolution.
Being in this intermediate regime will make it difficult
to quantitatively model the plasma without a detailed
numerical simulation incorporating both effects, which is
outside the scope of this paper. However, we can still
look for qualitative signatures of the inductive effects.

A typical trace of the current profile evolution in the
Weizmann experiment around stagnation is shown in
Fig. 6. The current channel is defined as the region be-
tween 20% and 90% of the total current and its centroid
is at ro = (r(laon) + 7(Io0%))/2. At 140 ns (after the
start of the discharge current) the current channel, i.e.
its centroid, reaches the smallest radius and commences
stagnation. Between 140 ns and 170 ns, the plasma con-
tinues to move inward, as indicated by the trajectory
of the peak electron density in the lower plot of Fig. 6.
While the inner edge of the current channel, Ipgy, im-
plodes together with the plasma, a distinct spread of the
outer edge of the current channel, Iggy, to much higher
radii is observed. The broadening of the current channel
is attended by an outward motion of its centroid. Subse-
quently, a narrowing of the current channel takes place,
while the plasma itself expands.
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FIG. 6. Upper graph: Evolution of the current channel, de-
fined as the region between 20% and 90% of total current,
on the Weizmann experiment around stagnation. Error bars
have been evaluated individually for each point according to
the signal to noise ratio of the measurement and the present
current profile. Lower graph: Trajectory of the peak plasma
density at the same times. The error bars represent the spa-
tial resolution of the setup. Together, the graphs show that
the current channel broadens while the plasma compresses
and re-contracts when the plasma expands.

Although this expansion and subsequent re-
contraction of the current profile seems unintuitive
on the first view, we were able to explain the behavior
of the near-stagnation plasma seen in Ref." based on a
plausible model for the velocity profile in the imploding
plasma. The good agreement between the experimental
data in Fig. 6 and the theoretical model in Fig. 5 is
consistent with the observation in Ref.?, for remarkably
different experiments and energies, that the main current
channel is located outside of the point of maximum
velocity and that the final stagnation is driven by the
implosion pressure rather than by the magnetic field.

V. COMPARISON TO HAINES’ RESISTIVE MODEL

We showed that for certain velocity profiles, the ideal
advection model predicted a decrease of the current con-
ducted in the plasma bulk, recovering qualitatively the
experimental measurements’. However, other models for
the current profile evolution exist as well. For instance,
one of the earliest and most successful models for the cur-

.5,6,16
3

rent distribution within a Z pinch, due to Haines
also predicted a small current bounce around stagnation.
In this section, we first briefly review Haines’ resistivity-
based model, and then explain why it does not ade-
quately describe the Weizmann experiment.

The model by Haines”"'® mostly ignored the plasma
motion (except for the possibility of metric compression),
focusing instead on resistive diffusion of the magnetic
field. In this model, the approach was to solve for the
current profile evolution consistent with the change in
the total current trace I;(t). The current trace thus set
a time-dependent boundary condition on the magnetic
field at the outer edge of the conductor.

An immediate consequence of this boundary-value ap-
proach was that changes in the total current diffused in-
ward from the outside edge of the conductor. Haines’
model thus predicted the formation of a positive cur-
rent sheath at the outer boundary during the current rise
time, and the formation of an inverse current sheath at
the outer boundary when the discharge current decreases.
Thus, the current channel would first move outward as
the current rose, and then move inward as it decayed.
However, there are three ways in which this model is in-
consistent with the Weizmann observations.

First, Haines’ model predicted that the additional cur-
rent added at the boundary would propagate resistively
inward, causing the enclosed current to increase at every
point in the plasma. In other words, although the cur-
rent channel would move outward before stagnation, so
that a smaller fraction of the current would flow in the
plasma bulk, the magnitude of the current in the plasma
bulk would increase. In the experiment, in contrast, the
current in the plasma bulk decreased prior to stagna-
tion. However, this observed behavior is consistent with
the current channel evolution in the advection model, as
shown in Fig. 5.

Second, the resistive model failed to explain why the
current escape and recontraction only occur around stag-
nation. In fact, Haines” model predicted more rapid es-
cape of the current channel at early times, since current
added at the boundary would form a larger fraction of
the overall current channel at times with less total cur-
rent. Instead, at the timepoints in the Weizmann ex-
periment near stagnation (between 140 ns and 170 ns),
the total discharge current only changed by around 10%,
inconsistent with the large-scale redistribution of the cur-
rent channel. In contrast, the advection model provides a
natural transition from current channel steepening in the
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initial current-driven annulus (Section IIIA), to current
channel broadening and escape during the final pressure-
driven compression near stagnation (Section 111 B).

Third, the resistive model predicted the formation of
an inverse current sheath as the total current began to de-
cay, whereas no inverse current sheath was observed on
the Weizmann experiment after the peak current. Ad-
mittedly, a small inverse sheath could have fallen within
the error bounds of the magnetic field measurement, with
the presence of the sheath only observable through the
apparent inward motion of the current channel.

These three points taken together make the Haines
model a poor candidate to explain the current escape
in the Weizmann experiment.

Note that the formation of inverse currents at the
plasma edge was one of the most interesting consequences
of the Haines model, since their presence implied that the
plasma would separate into a contracting inner plasma
and an expanding outer plasma. However, in subsequent
years, inverse currents were also shown to result from
the propagation of pressure shock waves from the plasma
center’. Moreover, as we showed in Section III A, inverse
currents can also arise fairly easily as a consequence of
the ideal induction equation, for certain velocity profiles.
Indeed, as Eq. (5) and Table I show, whenever a conduct-
ing area outside of a current distribution is subjected to
sub-metric compression or super-metric expansion, for
example as a result of pressure forces, a reverse current
distribution will develop. This suggests that reverse cur-
rents might be even more ubiquitous and easy to produce
than previously thought.

VI. DISCUSSION OF PLASMA OBSERVABLES FOR
FUTURE STUDIES

Because the magnetic Reynold’s number Rm ~ 1, it
is difficult to quantitatively disentangle resistive effects,
such as those in Haines’ model, from the ideal advec-
tive effects we considered. In this section, we discuss the
experimental observables which are most promising for
differentiating the ideal versus resistive behavior of the
plasma.

The unintuitive and nonconservative behavior of the
current density under ideal induction implies that it is
not the best observable to consider when attempting to
back out the plasma dynamics. Instead, a useful analysis
technique could be to make use of the locally ideally-
conserved quantities in the plasma, i.e. the magnetic

flux ®(r) = [, Bdr’ and the enclosed nucleus number
per unit length N (r) = 3, 27 [ ngr'dr’, where the sum
is over all charge states of all atomic species. Then, if
flux is conserved, the curve ®(N) will be constant at
all timepoints. Thus, if the magnetic field profile and
density profile can be independently measured, changes
in the curve ®(N) should indicate non-1D-ideal magnetic
field evolution.

However, such an approach is not without its draw-
backs. First, since the flux is an integral over radius, the
error in the magnetic field measurement will be amplified
at larger radii. Second, in a small-scale, low-density gas
puff Z-pinch, direct ion density measurements are infea-
sible. Thus, only the electron density can be measured
directly; ion density must then be inferred from the elec-
tron density and temperature, and neutrals are generally
entirely invisible. Thus, constructing an accurate N(r)
is challenging, although bounds can be placed based on
reasonable locations for the neutrals.

In addition to these integral conserved quantities, the
quantity B/rn. is also constant along the electron tra-
jectory in an axisymmetric ideal plasma'”. In fact, the
constancy of this quantity along the electron trajectory
can induce fast magnetic field penetration into a dilute
plasma'®. The quantity B/rn. is thus another strong
candidate for use with spectroscopic data, to evaluate
the consistency of the plasma dynamics with ideal MHD.
However, it also requires simultaneous measurement of
the density and magnetic field profiles, and thus is sub-
ject to many of the same errors as trying to measure
D(N).

Thus far, we have only considered measurement of
the magnetic field and nucleus density. However, in the
experiment performed at the Weizmann Institute, each
charge state was peaked at a different radius; the spectra
of these lines thus could in principle give measurements
of the magnetic field (via Zeeman splitting”*) and radial
velocities (via Doppler shifts'”:?") at those locations. In
the present experiment, the relatively low implosion ve-
locities prevented the spectroscopic velocity determina-
tion. However, the ability to measure v, as a function of
time would allow for the approximate reconstruction of
the fluid element trajectories R(Ry,t). Thus, by compar-
ing the flux curves ®(Ry) for the moving fluid elements at
different times, it should be possible to deduce the degree
to which flux is conserved, without relying on inferred ion
densities.

Finally, given the many complications, carrying out nu-
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merical simulations that reproduce the observed charge
state distribution evolution, including ionization and par-
ticle motion, could provide a useful bridge between exper-
iment and theory”. Such simulations should be focused
on the scenario we propose here, consistent with exper-
imental findings®, in which the pinch transitions from
a current-driven implosion at early times to a pressure-
driven implosion (with a corresponding outward force on
the current piston) at late times.

VIl. CONCLUSION

In this paper, we derived the consequences of the ideal
induction equation for the current channel dynamics in
a contracting or expanding Z pinch. We showed that
for non-metric compression, the current distribution can
exhibit surprising behavior. For a bounded-conductor
model, we showed that the specific velocity profile within
the imploding conductor had a dramatic effect on the
evolution of the total current flowing through the con-
ductor, suggesting that the evolution of the current dis-
tribution for a Z pinch could depend strongly on the
specifics of the implosion profile. In considering gas-puff
Z pinches, we discussed how the outward propagation
of an ionization wave implied the presence of a zero-
velocity conductor boundary, which in turn could lead
to the formation of reverse currents. We also showed
how certain velocity profiles could explain the expansion
and re-contraction of the current channel around stag-
nation, thus explaining part of the findings observed in
the Weizmann Z pinch experiment by the spectroscopic
magnetic field distribution in the imploding plasma.
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